UKOUG 1999 – OFA and Express Hints and Tips

OFA and Express Hints and Tips

Prepared for the 2000 European User Group by:

Ian Hayman, Principal Consultant, Termadvance Ltd.

Ian.Hayman@Termadvance.co.uk
[image: image1.png]Termadvance

L./

01495 212 314

Introduction

This paper covers technical hints and tips for use within the OFA 6.2 build environment, to help make OFA applications more robust and more easily maintainable.

The topics covered are those that have been tried and tested in a live environment, and are hence ‘proven technology’.

The intended audience is OFA system builders and designers, although some of the items covered may well apply to other Express-based applications. Prior knowledge of OFA and Express would be advantageous to the reader.

The items covered are:

· Object naming conventions;

· 2-way many to many relations;

· Startup program;

· When and how mcalc may be useful in OFA;

· Inherited dimensions;

· Easy custom menu maintenance.

Contents

1Introduction

Contents
2
Naming Conventions
3
What OFA Does For You
3
What OFA Doesn’t Do For You and How You Can Do It Yourself
3
2-Way Many to Many Attributes
6
Theory
6
Worked Example
6
Start-up Program
8
Introduction
8
What Can We Do With It?
8
Start-Up Order Of Processing
8
Structure Changes Using The Start Up Program
8
Re-Register
8
MCALC in OFA
8
What Does MCALC Do?
8
How can I Make It Work?
8
Inherited Dimensions And Other Information
9
Example
9
Why Do It?
9
How Do I Do It?
10
Potential Pitfalls
10
Easy Custom Menu Maintenance
11
Introduction
11
Problems
11
The Solution
11
About the Author
12

Naming Conventions

Naming conventions are very important when you build a system that other people are going to use and possibly maintain. Without sensible naming conventions, users may find the system confusing, and developers maintaining the system find their job more difficult and confusing than it could have otherwise been.

What OFA Does For You

When you define a new object in OFA, you are given the opportunity to enter various pieces of information about it. For example, for a new dimension, you can specify the dimension long description (this is what the OFA user sees in the front-end), the dimension name (the Express data object name), and the object prefix (used to generate other internal reference data), and for a new FDI, you can specify the name and the Express object name.

This is good, because the OFA front-end allows you to specify exactly what you want the user to see in the delivered application, and also, should you have the need to refer to the Express object directly, either via. an Oracle Express program or via an OFA formula, you know exactly what it is called.

What OFA Doesn’t Do For You and How You Can Do It Yourself

General

Although OFA allows you to specify what your objects are called, this can be a double-edged sword, because it does not necessarily enforce a sensible naming convention. This means that without suitable guidelines, it is very difficult to build a system with consistent naming conventions.

As an example, consider a formula in OFA that contains the expression:

If on_commission eq 1 then sales * 0.03 else 0

How can we tell what sort of object “on_commission” is?

The answer is easy, of course. We could scan through the lists of FDIs in our OFA system to find it, and we may eventually find an FDI with an Express object name that matches. Then we’d be able to see it’s type (decimal, integer, etc.) and also whether it contains absolute data or it is itself a formula.

But what if we can’t find it? It may be a dimension value, or a relation (attribute). It may even be a program. The answer is again easy, of course. We can merely go to the Blue Screen and describe it, but this is not necessarily as easy as it seems. In older versions of OFA we can Alt-Tab to the Blue Screen, or in later versions we can use the Express Monitor, but neither of these may be available, in which case we may have to exit out of OFA, turn on the Developer or the ExpMonitor option in the .INI file, and then re-start OFA. But we’re reasonably sure to get there in the end unless there are security settings that restrict write access to the .INI file, and so on we go.

The whole point is that although you can eventually find out the definition of the on_commission object, if it had a more rigorously defined name, we would not necessarily have to do any of the above.

For example:

· If it was a program that returns an integer, we could call it pi.on_commission;

· If it was an integer absolute FDI we could call it vi.on_commission;

· If it was a decimal formula FDI we could call it fd.on_commission;

· If it was a text dimension we could call it dt.on​_commission.

As you can see, a simple set of object naming conventions helps us to quickly understand the context of a formula or program reference, thus saving us a lot of unnecessary time searching through the front-end or back-end data dictionaries.

Attributes

In OFA, attributes are stored behind the scenes as either an Express relation, or an Express conjoint dimension, depending on whether you define the attribute to be a one-to-many or a many-to-many attribute. OFA allows you to specify the attribute description (what the users see), but it does NOT allow you to define the name of the underlying Express object. This means that it can be rather difficult to refer to this object programmatically without again looking behind the scenes to find the appropriate object reference.

If I define a one to many attribute between two dimensions, OFA will generate an Express relation with a name made up of:

“.RL.” + <user code> + <random number> + ”R”

For example:

Define .rl.aa38144r relation dim2 <dim1>

If I define a many to many attribute between two dimensions, OFA will generate an Express conjoint dimension with a name made up of:

“.RL.” + <user code> + <random number> + ”C”

For example:

Define .rl.aa38144c dimension <dim1, dim2>

This means that you need to refer to these rather strangely named objects in your programs and formulae, and a lot of the context can be lost. For example:

Limit dim2 to “xxx”

Limit .rl.aa38144c to dim2

Limit dim1 to .rl.aa31844c

Of course, this is a trivial example, but did you spot the deliberate typo? The Express compiler would, but it may take you quite a lot of time to spot it! Wouldn’t life be a lot easier if we could rename these Express objects to something more sensible? Here’s how to do it:

Renaming One To Many Attributes

Rename the Express object:

Rename .rl.aa38144r r.dim1_dim2

Rename the catalogue data to reflect the Express object name change:

Limit rl.entry to ‘RL.AA38144R’

Maintain rl.entry renmae rl.entry ‘DIM1_DIM2’

Rl.catalog(rl.prop ‘OBJ.NAME’) = ‘R.DIM1_DIM2’

Renaming Many To Many Attributes

Rename the Express object:

Rename .rl.aa38144c c.dim1_dim2

Rename the catalogue data to reflect the Express object name change:

Limit rl.entry to ‘RL.AA38144C’

Maintain rl.entry rename rl.entry ‘DIM1_DIM2’

Rl.catalog(rl.prop ‘OBJ.NAME’) = ‘C.DIM1_DIM2’

Our program code example would now read:

Limit dim2 to “xxx”

Limit c.dim1_dim2

Limit dim1 to c.dim1_dim2

Hierarchies

We can also do similar things with hierarchies, should we need to refer to them from programs or formulae.

OFA stores hierarchies as self-referential two-dimensional relations, with the naming convention:

“FMSHREL.” + <hierarchy base dimension prefix>

For example:

Define fmshrel.dim3 relation dim3 <dim3, fmshdim.dim3>

(fmshdim.dim3 is a generated dimension that contains an entry for each of the dimension’s hierarchies)

To rename the hierarchy, do the following:

Maintain fmshdim.dim3 rename ‘HI.AA1234’ ‘DIM3.HIER1’

Maintain hi.entry rename ‘HI.AA1234’ ‘DIM3.HIER1’

Remember that you must either “re-register” OFA or exit out and re-start for these changes to become effective!

Models and Solves

Similarly, models and solves have their underlying Express objects automatically defined, but this is not so much of an issue, since one rarely has the need to refer to these programmatically.

2-Way Many to Many Attributes

Theory

OFA many-to-many attributes are stored in Express as conjoint dimensions, which means that we can use the conjoint to limit programmatically from one of the conjoint’s base dimensions to another:

Limit dim1 to ‘xxx’

Limit cj to dim1

Limit dim2 to cj

Limit dim2 to ‘yyy’

Limit cj to dim2

Limit dim1 to cj

However, OFA forces us to specify which of DIM1 and DIM2 is the “base dimension”, and this restricts the limiting that we can do within the OFA front-end to only one direction. If we define another many to many relation to go the other direction, we will have two data structures to maintain, with one duplicating the other.

We can use the Express object renaming method mentioned earlier to allow us to build a 2-way many to many attribute using only one shared conjoint in the following way:

· Define the first many to many attribute as normal, renaming the underlying structures as necessary, for example with Dim1 as the base dimension and Dim2 as the grouping dimension;

· Define another many-to-many attribute with Dim1 as the grouping dimension and Dim2 as the base dimension;

· Rename the underlying structures for the new attribute so that both attributes use the same underlying conjoint dimension;

· Delete the redundant conjoint dimension.

We can now use both attributes, with both attributes being driven from the same Express data object. This can be edited from either of the attribute editors, and will be reflected in the other.

Worked Example

This shows a worked example of the theory above.

We are using two dimensions, dim1 and dim2, and want to build a 2-way many to many attribute.

First, define the two many to many attributes:

Name
Base Dimension
Grouping Dimension
Data Object Name (system- generated)

Dim1 to Dim2 Attr.
Dim1
Dim2
.rl.tw1580c

Dim2 to Dim1 Attr.
Dim2
Dim1
.rl.20203c

The OFA relation information catalogue RL.CATALOG will contain the following:

 ---------------RL.CATALOG----------------

 ----------------RL.ENTRY-----------------

RL.PROP RL.TW1580 RL.TW20203

-------------- -------------------- --------------------

CLASS PERSONAL PERSONAL

MODIFIER TW TW

TIME.MODIFIED 99/08/20 10:08:38 99/08/20 10:08:57

DESCRIPTION NA NA

REL.TYPE MANY MANY

BASE.DIM DIM1 DIM2

AGGR.DIM DIM2 DIM1

OBJ.NAME .RL.TW1580C .RL.TW20203C
Now rename the first conjoint:

Rename .rl.tw1580c c.dim1_dim2

And amend the relation catalogue to reflect the changes:

Maintain rl.entry rename ‘RL.TW1580’ ‘DIM1_DIM2’

Maintain rl.entry rename ‘RL.TW20203’ ‘DIM2_DIM1’

Rl.catalog(rl.entry ‘DIM1_DIM2’, rl.prop ‘OBJ.NAME’) = ‘C.DIM1_DIM2’

Rl.catalog(rl.entry ‘DIM2_DIM1’, rl.prop ‘OBJ.NAME’) = ‘C.DIM1_DIM2’

The amended catalogue will now look like this:

 ---------------RL.CATALOG----------------

 ----------------RL.ENTRY-----------------

RL.PROP DIM1_DIM2 DIM2_DIM1

-------------- -------------------- --------------------

CLASS PERSONAL PERSONAL

MODIFIER TW TW

TIME.MODIFIED 99/08/20 10:08:38 99/08/20 10:08:57

DESCRIPTION NA NA

REL.TYPE MANY MANY

BASE.DIM DIM1 DIM2

AGGR.DIM DIM2 DIM1

OBJ.NAME C.DIM1_DIM2 C.DIM1_DIM2

Finally, we can delete the redundant conjoint dimension:

Delete .rl.tw20203c

The two-way many to many attribute is now ready to use.

Start-up Program

Introduction

When OFA starts up, if a program called LC.STARUP.PRG exists, OFA will run it. This is similar to the way in which Express automatically runs the AUTOGO program on start-up.

What Can We Do With It?

Within the start up program, we can do just about anything that we want to, but it is important to realise the order in which OFA performs certain start-up functions so that we can fully understand the implications of what we are doing in the start-up program and how it affects the OFA front-end.

Start-Up Order Of Processing

When OFA starts up, it runs through several steps:

· Start Express (or connects to an Express Server session);

· Load the front-end custom menu structures and other structural information;

· Build the internal reference data necessary for the VB front-end to run;

· Process any distributions from the superior DBA;

· Run the start-up program.

Structure Changes Using The Start Up Program

When we perform any maintenance functions within the start-up program, the database definitions will have already been loaded into the VB front-end. Because of this, we must either re-register OFA, or close it down and re-start it to ensure that any changes that we have made are reflected in the front-end.

Re-Register

We can build a program to re-register OFA by creating an empty program (i.e. one that does nothing) and calling it from the OFA Custom Tools menu. If we specify the “Reregister” option in the custom menu catalogue, OFA will re-register the front-end after the program has run.

MCALC in OFA

What Does MCALC Do?

MCALC is an Express function that performs custom on-the-fly aggregations.

This can be useful if we only require the aggregated data as a one-off or if we do not want to store aggregated data due to database size implications. This happens particularly when we want to avoid aggregating sparse data, since the aggregation process can dramatically affect the sparsity pattern and even the necessity to use sparsity settings (composites) at all.

How can I Make It Work?

For MCALC to work, you need to have a members list which contains a list of the leaf descendants in the aggregate hierarchy for each of the aggregate dimension values in the hierarchy. Obviously if the hierarchy changes, we need to change the contents of this member list, which we could do in the start-up program.

Since the contents of the member list are not read from the database by Express until it is requested at run-time, this sort of maintenance function would NOT require a re-register to make it work.

Inherited Dimensions And Other Information

Example

Within OFA it is sometimes useful to have shadow dimensions that are copies of other dimensions.

For example, we may have a dimension that contains sets of accounts that have different uses, perhaps for an Operating Costs Statement (OCS) and a Balance Sheet (BS). If this was the case, we would have two FDIs dimensioned by account dimension, perhaps as follows:

Define dt.account dimension text

Define vsd.ocs shortdecimal <dt.account, week>

Define vsd.bs shortdecimal <dt,account, week>

If half the accounts were OCS accounts and half were BS accounts, then we would have two FDIs that were up to half-empty:

Account
OCS FDI
BS FDI

OCS Accounts
In use
Allocated but not in use

OCS and BS Accounts
In use
In use

BS Accounts
Allocated but not in use
In use

However, if we had separate OCS and BS dimensions, we could save a lot of this redundant space:

Define dt.ocs_account dimension text

Define dt.bs_account dimension text

Define vsd.ocs shortdecimal <dt.ocs_account, week>

Define vsd.bs shortdecimal <dt.bs_account, week>

Derived Account
OCS FDI

OCS Account
In use

OCS and BS Accounts
In use

Derived Account
BS FDI

BS Account
In use

OCS and BS Accounts
In use

Of course this means that it is now rather awkward to view OCS and BS data in the same report, because they have different dimensionality. We can work round this by building formula FDIs based on the account dimension:

Define fsd.ocs shortdecimal formula <account, week>

Eq if isvalue(dt.ocs_account, dt.account) then vsd.ocs(dt.ocs_account, dt.account) else NA

Define fsd.bs shortdecimal formula <account, week>

Eq if isvalue(dt.bs_account, dt.account) then vsd.bs(dt.bs_account, dt.account) else NA

Why Do It?

The reason that we’d want to do this sort of thing is when database space considerations are important, but we have to load the account values all in one go. Perhaps the account structures are fed from another system which forces our hand to a certain extent.

How Do I Do It?

To make the derived accounts work, we need to build a flag to indicate which account values are OCS accounts and which ones are BS accounts. Because there is the possibility that an account may appear in both the OCS and the BS, we need a structure that both allows this and is available within OFA.

The structure that satisfies this criteria is a many to many attribute, which gives us a conjoint dimension in the Express database. To achieve this, we need to build the following structures:

· An Account Flag dimension, containing the values “OCS” and “BS”;

· A Many to many attribute with account as the base dimension and account flag as the grouping dimension (with the underlying conjoint suitably renamed, of course, perhaps to C.ACC_ACCFLG).

All that remains now is to put the appropriate code into the start-up program to do the required maintenance, something like:

Limit dt.account_flag to ‘OCS’

Limit c.acc_accflg to dt.account_flag

Limit dt.account to c.acc_accflg

Maintain dt.ocs_account merge dt.account

Limit dt.ocs_account to charlist(dt.account)

Ocacc.desc = unravel(acc.desc)

Ocacc.lbl.row = unravel(acc.lbl.row)

Ocacc.lbl.col = unravel(acc.lbl.col)

...and similarly for the Balance Sheet Acocunt.

The end-user can now set the attribute for any new account values that arrive in future, to specify whether it’s an OCS account or a BS account or both, thus avoiding any need for the development team to become involved whenever new account values are added into the system. The new OCS and BS dimension values will be automatically created.

Potential Pitfalls

The Need To Re-Register

As mentioned earlier in this document, when the start-up program does dimension maintenance you need to re-register or re-start OFA to see these changes appear in the OFA front-end.

Distributions

As a designer, you need to make a decision as to whether this maintenance should happen in the Super DBA workstation only or in all subordinate workstations. This will depend on what data you want available at which levels of the system.

I recommend that you only perform this type of maintenance at SuperDBA level in most cases, since then you have more control over which structures can be distributed to where.

Deletions

We have covered how to automatically add in new dimension values based on the contents of another dimension, and this does, incidentally, also cover changes to the source dimension values, but we have not discussed how to deal with deletions. If a value is deleted from the source dimension, it will remain in the target dimension until the DBA manually deletes it.

This is necessary because if we programmatically deleted a dimension value from the Super DBA workstation, we would not be able to subsequently delete it from any subordinate workstations to which we had distributed it. This is particularly important when considering the Shared database, because the start-up program never runs on the Shared database, and so cannot perform the required maintenance on it.

Easy Custom Menu Maintenance

Introduction

Custom menu items appear in the Tools Menu on the OFA front-end. These are menu items that are configurable by OFA developers.

The definitions for the custom menus are stored in custom menu catalogue LC.CATALOG:

Define lc.prop dimension text

Define lc.entry dimension text

Define lc.catalog text <lc.prop, lc.entry>

All you have to do to make the custom menus work is to add in a value to the LC.ENTRY dimension and then fill in the LC.CATALOG FDI.

Problems

Express Monitor

In versions of OFA that use personal Express, editing an FDI is relatively easy – Alt-Tab to the Blue Screen and table it. However, Express Monitor is the only interface available with Express Server, and Express Monitor does not do the table command, only report.

Distribution

Once we manage to amend out custom menu variable, we have another difficulty – how do we get it to the subordinate users? LC.CATALOG is not an FDI, so we can’t distribute it!

Front-end Access

We may want to allow custom menu maintenance via. the OFA front-end rather than through Blue Screen access. None of the above allow this.

The Solution

The solution to all the above problems is to define (using the OFA front-end) a copy of the LC.CATALOG structure:

Dimensions

Description
Express Object
Type

Custom Menu Entry
VT.LC_ENTRY
Text

Custom Menu Property
VT.LC_PROP
Text

FDI

Description
Express Object
Type
Dimensions

Custom Menu Catalogue
VT.LC_CATALOG
Text
Custom Menu Property

Custom Menu Entry

Dimension Values

You need to add in dimension values to the Custom Menu Property dimension to mirror the LC.PROP dimension, and add in a new value to the Custom Menu Entry dimension for each menu item.

Worksheet

We can then build a worksheet (available at only Super DBA level if appropriate) which allows the Super DBA to amend the above structures using standard OFA, which we can then distribute to whichever users we want to.

Start-up Program

To copy the data from our custom object to the standard objects, we can again use the OFA start-up program:

Limit lc.prop to all

Limit vt.lc_prop to charlist(lc.prop)

Limit vt.lc_entry to all

Maintain lc.entry merge vt.lc_entry

Limit lc.entry to charlist(vt.lc_entry)

For lc.entry

DO

Limit vt.lc_entry to lc.entry

Lc.catalog = unravel(vt.lc_entry)

DOEND

This piece of code would have to run at all levels at which the custom menus need to appear, and of course additional programming would be required to cope with deletions of menu items.

Re-registration or re-start of OFA is again required before these data and structure changes are reflected in the OFA front-end.

About the Author

The author of this paper, Ian Hayman, currently holds the position of Principal Consultant for Termadvance Ltd., who specialise in system development using Oracle OLAP and RDBMS technology, and training in similar areas.

Ian has worked with Oracle Express and related technology (OSA, OFA, OEO, and OES) as a system developer for over ten years, in various market sectors including Pharmaceuticals, Retail, Manufacturing, and the Public Sector.

Ian has also recently run several OFA training courses.

�

Ian Hayman
Termadvance Ltd
07/06/97 06:26
D:\MADRID\paper\presentation62..doc
Page 1 of 1

Ian Hayman
Termadvance Ltd
07/06/97 06:26
D:\MADRID\paper\presentation62..doc
Page 4 of 1

