
Fantrap Support in Discoverer
Version 3.1.41
An Oracle Technical White Paper

April 2000

Fantrap Support in Discoverer Version 3.1.41, An Oracle Technical White Paper
April 2000

2

Fantrap Support in Discoverer
Version 3.1.41

Introduction

This white paper will discuss the well known fantrap phenomenon in query and reporting environments. It will
present a scaleable (i.e. server based) and maintenance free solution for this problem. Until now administrators of
query and reporting tools in general were struggling with implementing maintenance intensive workarounds and
very complicated solutions in order to provide end users with correct results. The Oracle Discoverer development
team has put a lot of effort in finding a final solution to this problem. The solution is presented in this white paper.

Fantrap Support in Discoverer Version 3.1.41, An Oracle Technical White Paper
April 2000

3

Statement of the problem

Two basic architectures (OLTP systems and data warehouses)

The phenomenon ‘Fantrap’ typically appears in situations where
information is retrieved from relational databases via SQL in which
multiple tables are involved. In general there are two basic architectures in
which the fantrap occurs. The first situation is the so-called master-detail-
detail (MDD) model, typically found in OLTP systems. In this model the
first detail table is the master for the second detail table. An example of the
MDD model is shown in figure 1. CUSTOMER is the master table, SALE is
the first detail table having a second detail table SALE_DETAILS.

The second situation is found in data warehouses with multiple fact tables
and common dimension tables. In data warehouse environments multiple-
fact-table data models are not unusual. According to data warehouse
experts like Ralph Kimball, a fact table is subject oriented and is
dimensioned by a set of dimension tables. In a data warehouse
environment multiple subjects may exist and therefore it is not unusual
that a data warehouse model contains more than one fact table with
common dimensions. This model is indicated as MF2 (an acronym for
master-fact1-fact2). This model is shown in figure 2.

Figure 1. (Right) An example of a MDD model

Figure 2. (Left) An example of a MF2 model

 Both systems are used as data source by end users for information retrieval using ad-hoc query and
analysis tools like Oracle Discoverer. These tools use dynamically generated SQL to retrieve data from
these data sources based on an intermediate semantic layer. The semantic layer is the business area in the
EUL for Discoverer. The following section explains why the basic models are potential sources of erroneous
result sets for ad-hoc SQL generating query tools.

Why does this go wrong in straight SQL ?

The semantic layer in query tools hide database complexity for end users. Basically the database tables and columns
are presented in terms of commonly known and accepted objects. When end users create an ad-hoc report these
objects or items are selected. The semantic layer generates the corresponding SQL by selecting the corresponding
tables, join paths and applied constraints. In fact, the basic components of a SQL statement (SELECT, FROM,
WHERE, GROUP BY, etc.) are filled in.

Fantrap Support in Discoverer Version 3.1.41, An Oracle Technical White Paper
April 2000

4

 Let us see what happens when a report is created based on the basic architectures. The examples used in
this paper are based on the data model given in Appendix A.

 Example 1: The MDD basic model

 Based on the presented MDD model a report can be created showing the COSTS and SALES_AMOUNT
per CUSTOMER. Following the strategy described above, the SQL statement generated is:
 SELECT M.CUST_NAME CUSTOMER
 , SUM(D.SALES_AMOUNT) SALES
 , SUM(DD.COSTS) COSTS
 FROM CUSTOMER M
 , SALE D
 , SALE_DETAILS DD
 WHERE M.CUST_KEY=D.CUST_KEY
 AND D.SALE_ID=DD.SALE_ID
 GROUP BY M.CUST_NAME

 which results into:
 CUSTOMER SALES COSTS
 -------- ------- -----
 CUMMINGS 800,00 3.10
 GRANT 1400,00 7.45
 JOHNSON 1000,00 2.00
 MCCLOUD 300,00 0.30
 OSBORNE 4800,00 5.60

 This is very wrong and should be
 CUSTOMER SALES COSTS
 -------- ------- -----
 CUMMINGS 800,00 3.10
 GRANT 900,00 7.45
 JOHNSON 1000,00 2.00
 MCCLOUD 300,00 0.30
 OSBORNE 1600,00 5.60

 The SALES column contains wrong results because some sales records have more than one detail record,
i.e. SALE_ID=12 and SALE_ID=16, which is confirmed by the temporary result of the SQL statement above
before the aggregation and GROUP BY:
 CUSTOMER SALE_ID SALES COSTS
 -------- ------- ----- -----
 JOHNSON 11 1000 2.00
 GRANT 12 500 2.50
 GRANT 12 500 0.75
 GRANT 13 400 4.20
 CUMMINGS 14 800 3.10
 MCCLOUD 15 300 0.30
 OSBORNE 16 1600 1.10
 OSBORNE 16 1600 0.50
 OSBORNE 16 1600 4.00

 Example 2: The MF2 basic model

 Based on the presented MF2 model a report can be created showing the SALES_AMOUNT and
LOAN_AMOUNT per CUSTOMER. Straight SQL would result into:
 SELECT C.CUST_NAME CUSTOMER,
 SUM(S.SALES_AMOUNT) SALES_REVENUE,
 SUM(L.LOAN_AMOUNT) LOAN_REVENUE
 FROM CUSTOMER C
 , SALE S
 , LOAN L

Fantrap Support in Discoverer Version 3.1.41, An Oracle Technical White Paper
April 2000

5

 WHERE C.CUST_KEY = S.CUST_KEY
 AND C.CUST_KEY = L.CUST_KEY
 GROUP BY C.CUST_NAME

 Which results into:
 CUSTOMER SALES_REVENUE LOAN_REVENUE
 -------- ------------- ------------
 CUMMINGS 2400 160
 GRANT 900 20
 JOHNSON 2000 140
 MCCLOUD 600 30
 OSBORNE 1600 40

 And is wrong again. It should be:
 CUSTOMER SALES_REVENUE LOAN_REVENUE
 -------- ------------- ------------
 CUMMINGS 800 160
 GRANT 900 10
 JOHNSON 1000 140
 MCCLOUD 300 30
 OSBORNE 1600 40

 If for a given customer, the number of sales transactions differs from the number of loan transactions, the
result is wrong for that specific customer, which is confirmed by the temporary result:
 CUSTOMER SALES_REVENUE LOAN_REVENUE
 -------- ------------- ------------
 CUMMINGS 800 30
 CUMMINGS 800 30
 CUMMINGS 800 100
 GRANT 400 10
 GRANT 500 10
 JOHNSON 1000 50
 JOHNSON 1000 90
 MCCLOUD 300 20
 MCCLOUD 300 10
 OSBORNE 1600 40

 In fact the join created in the SQL statement above is not valid. There is no semantic relationship between
sale and loan transactions. Therefore the query should be solved in two separate queries and printed next
to each other in the report.

 In fact both data warehouse and OLTP data models may contain these basic models. MDD models appear
in OLTP schemas and MF2 in data warehouse models for which multiple fact tables are implemented. The
next section shows some solutions implemented by query and reporting tools.

Known solutions

 SQL generating query and reporting tools in the Business Intelligence market place have been struggling for
years to solve these kinds of problems (these tools are sometimes called the desktop OLAP tools).

 In all versions up to patch release 3.1.40, Oracle Discoverer has been able to detect a potential fan trap
situation. The detection works properly for the MF2 situation only (master with multiple detail tables) and
is based on the foreign key relationships defined in the database schema or defined in the Business Area by
the Oracle Discoverer Administrator (see figure 3)

Fantrap Support in Discoverer Version 3.1.41, An Oracle Technical White Paper
April 2000

6

Figure 3. Fantrap detection in Oracle Discoverer until release 3.1.40

When the detection is disabled the user may obtain wrong results. When the fan trap detection is enabled
the user will not be able to create a report based on two detail tables, unless the Discoverer Administrator
creates a UNION ALL custom folder based on a union of both fact tables. However this solution is not
satisfactory in a situation with very large fact (detail) tables, i.e. it is not a scaleable solution. It is not a
manageable solution either with many fact tables: the Discoverer Administrator has to create a custom
folder for all possible combinations of fact tables.

Fantrap Support in Discoverer Version 3.1.41, An Oracle Technical White Paper
April 2000

7

Fantrap support in Oracle Discoverer

This section will discuss the solution of Oracle Discoverer to the fantrap problem. It will show that this
solution is generic for all data models. The solution will be presented based on both basic models .

The concept of inline views

The solution implemented in Oracle Discoverer version 3.1.41 is server based and involves the use of inline
views. In the previous section the SQL statements without inline views retrieved wrong results because the
tables involved are joined before the single-group function (aggregation, SUM) is performed. In fact, each
table involved in the query should be grouped first before it is joined with a related table. The foreign key
columns of the aggregated table, required to join with a related table, together with referenced primary
keys, constitute the GROUP BY clause of the query. This concept is the basis for the algorithm implemented
in Discoverer. Let us work out this concept with the basic model examples.

Example 1: The MDD basic model

The required information is CUSTOMER.CUST_NAME, SALE.SALES_AMOUNT and
SALE_DETAILS.COSTS.

The tables involved in this example are:
TABLE_NAME MEASURES PRIMARY KEY

COLUMN(S)
FOREIGN KEYS
COLUMN(S)

CUSTOMER - CUST_KEY -
SALE SALES_AMOUN

T
SALE_ID CUST_KEY

SALE_DETAIL
S

COSTS TRX_LINE SALE_ID

Table 1. Tables involved in example 1, MDD. The right column contains the relevant foreign key columns.
Primary keys columns in yellow are referenced by related foreign keys.

 The CUSTOMER table does not store any measures (data points). The SALE table contains a measure to
which a single-group function must be applied: SALES_AMOUNT. The foreign key to CUSTOMER is
CUST_KEY, referencing the primary key of CUSTOMER, i.e. CUST_KEY. The SALE_DETAILS table also
contains a measure: COSTS. The foreign key to SALE is SALE_ID referencing the primary key of SALE, i.e.
SALE_ID.

First for each of the two detail tables, an inline view is defined. In this example we will call them SALE_IVW and
SALE_DETAILS_IVW respectively.

 Inline view for SALE:
 (
 SELECT S.CUST_KEY CUST_KEY
 , S.SALE_ID SALE_ID
 , SUM(S.SALES_AMOUNT) SALES_AMOUNT
 FROM SALE S
 GROUP BY S.CUST_KEY, S.SALE_ID
) SALE_IVW

 CUST_KEY SALE_ID SALES_AMOUNT
 ---------- ---------- ------------
 1 12 500
 1 13 400
 2 14 800
 3 15 300
 4 11 1000
 5 16 1600

 Inline view for SALE_DETAILS:
 (
 SELECT D.SALE_ID SALE_ID
 , SUM(D.COSTS) COSTS
 FROM SALE_DETAILS D
 GROUP BY D.SALE_ID
) SALE_DETAILS_IVW

 SALE_ID COSTS
 ---------- ----------
 11 2.00
 12 3.25
 13 4.20
 14 3.10

Fantrap Support in Discoverer Version 3.1.41, An Oracle Technical White Paper
April 2000

8

 15 0.30 16 5.60

 Consequently each in-line is used to constitute the final SQL statement:
 SELECT M.CUST_NAME CUSTOMER
 , SUM(D.SALES_AMOUNT) SALES
 , SUM(DD.COSTS) COSTS
 FROM CUSTOMER M
 , SALE_IVW D
 , SALE_DETAIL_IVW DD
 WHERE M.CUST_KEY = D.CUST_KEY
 AND D.SALE_ID = DD.SALE_ID
 GROUP BY M.CUST_NAME

 The same analysis holds for the second example, the MF2 basic model:

 Example 2: The MF2 basic model

 The required information is CUSTOMER.CUST_NAME, SALE.SALES_AMOUNT and
LOAN.LOAN_AMOUNT.

 The tables involved in this example are:
 TABLE_NAME MEASURES PRIMARY KEY

COLUMN(S)
 FOREIGN KEYS
COLUMN(S)

 CUSTOMER - CUST_KEY
 SALE SALES_AMOUN

T
 SALE_ID CUST_KEY

 LOAN LOAN_AMOUNT - CUST_KEY
Table 2. Tables involved in example 2, MF2. The right column contains the relevant foreign key columns.

Primary keys columns in yellow are referenced by related foreign keys.

The CUSTOMER table, again, does not store any measures. The SALES table and LOAN table contain a
measure to which a single-group function must be applied: SALES_AMOUNT and LOAN_AMOUNT
respectively. The foreign key to customer is CUST_KEY, referencing the primary key of CUSTOMER, i.e.
CUST_KEY for both tables.

According to the inline view concept together with table 2 the following in-line views are defined, called
SALE_IVW and LOAN_IVW respectively in the example printed below.

Inline view for SALE:
(
SELECT C.CUST_KEY CUST_KEY
, SUM(S.SALES_AMOUNT) SALES_AMOUNT
FROM CUSTOMER C
, SALE S
WHERE C.CUST_KEY = S.CUST_KEY
GROUP BY C.CUST_KEY
) SALE_IVW

 CUST_KEY SALES_AMOUNT
---------- ------------
 1 900
 2 800
 3 300
 4 1000
 5 1600

Inline view for LOAN:
(
SELECT C.CUST_KEY CUST_KEY
, SUM(L.LOAN_AMOUNT) LOAN_AMOUNT
FROM CUSTOMER C
, LOAN L
WHERE C.CUST_KEY = L.CUST_KEY
GROUP BY C.CUST_KEY
) LOAN_IVW

 CUST_KEY LOAN_AMOUNT
---------- -----------
 1 10
 2 160
 3 30
 4 140
 5 40

Fantrap Support in Discoverer Version 3.1.41, An Oracle Technical White Paper
April 2000

9

Consequently each in-line is used to constitute the final SQL statement:
SELECT M.CUST_NAME CUSTOMER
, SUM(D1.SALES_AMOUNT) SALES
, SUM(D2.LOAN_AMOUNT) LOAN
FROM CUSTOMER M
, SALE_IVW D1
, LOAN_IVW D2
WHERE M.CUST_KEY = D1.CUST_KEY
AND M.CUST_KEY = D2.CUST_KEY
GROUP BY M.CUST_NAME

From version 8.1.5 of Oracle database, inline views are not only supported in the FROM clause but also in
the SELECT clause. This opportunity enables us to use in-line views in a more compact and effective way.
SELECT C.CUST_NAME CUSTOMER
, (

SELECT SUM(S.SALES_AMOUNT)
FROM SALE S
WHERE S.CUST_KEY = C.CUST_KEY
) SALES_REVENUE

, (
SELECT SUM(L.LOAN_AMOUNT)
FROM LOAN L
WHERE L.CUST_KEY = C.CUST_KEY
) LOAN_REVENUE

FROM CUSTOMER C

This alternative but very elegant SQL statement, based on in-line views in the SELECT clause, reflects the
fact that there is no relationship at all between sale and loan transactions. (We would like to thank Lex de Haan
who analyzed this basic model and brought the solution in line with relational calculus principles).

Oracle Discoverer version 3.1.41 implements both solutions mentioned. Figure 4 shows the generated SQL in the
MF2 example.

Figure 4. Generated SQL for the MF2 example.

Fantrap Support in Discoverer Version 3.1.41, An Oracle Technical White Paper
April 2000

10

Performance, scaleability and maintenance

The solution described above is a server based solution because the query is performed entirely by the database. The
intelligence of recognizing a fantrap situation is in the Discoverer EUL. The temporary inline views are created on
the server and are joined together on the server:

The solution is completely maintenance free. This is especially important with frequently changing data models.
During the setup and maintenance of the Business Area the Discoverer Administrator does not have to reckon with
any additional settings for possible fantrap situations. The only aspect that is important for the generation of correct
SQL are constraints. The Discoverer Administrator must setup the table constraints properly either in the database
or in the Business Area. If the database changes a refresh of the Business Area is sufficient to reflect these changes.

This architecture ensures the solution to be very scaleable, maintenance free, client machine independent and
gives optimal performance.

Concluding remarks

This document presented the most important enhancement of Oracle Discoverer version, 3.1.41, which is fantrap
support. Fantrap situations commonly occur in small and large data warehouse environments. It has been shown that
the solution implemented by Oracle Discoverer is easy to understand, free of maintenance and very scaleable. The
technical, server based architecture of the fantrap support implementation guarantees optimal performance and does
not rely on any additional knowledge of end user and administrators concerning fantrap environments.

Fantrap Support in Discoverer Version 3.1.41, An Oracle Technical White Paper
April 2000

11

Appendix A. Demo Table Descriptions

 This appendix describes the demo schema and tables used throughout this document.

Figure 1. The demo data model

Description and contents of the tables are shown on the next pages.

Fantrap Support in Discoverer Version 3.1.41, An Oracle Technical White Paper
April 2000

12

Description of the demo tables. Primary keys are indicated in blue, bold italics, foreign keys in blue only.
TABLE: OPERATOR
NAAM TYPE
------------------ ------------
OPER_ID NUMBER(3)
OPER_NAME VARCHAR2(10)
OPER_LOGIN DATE
OPER_LOGOUT DATE

TABLE: CUSTOMER
NAAM TYPE
------------------ ------------
CUST_KEY NUMBER(10)
CUST_ID NUMBER(10)
CUST_NAME VARCHAR2(50)
REG_KEY NUMBER(10)
VALID_THRU DATE

TABLE: CALENDAR
NAAM TYPE
------------------ ------------
CAL_DATE DATE
CAL_WEEK NUMBER(2)
CAL_MONTH NUMBER(2)
CAL_YEAR NUMBER(4)

TABLE: PRODUCT
NAAM TYPE
------------------ ------------
PROD_KEY NUMBER(10)
PROD_NAME VARCHAR2(50)
COLOR VARCHAR2(10)
VALID_DATE DATE
DATE_UNTIL DATE

TABLE: CONTRACT
NAAM TYPE
------------------ ------------
CONTR_KEY NUMBER(1)
CONTR_DESC VARCHAR2(20)
CONTR_DURATION VARCHAR2(10)

TABLE: SALE
NAAM TYPE
------------------ --- --------
CUST_KEY NUMBER(10)
SALE_DATE DATE
SALES_AMOUNT NUMBER(10)
OPER_ID NUMBER(3)
SALE_ID NUMBER(2)

TABLE: LOAN
NAAM TYPE
------------------ ------------
CUST_KEY NUMBER(10)
CONTR_KEY NUMBER(10)
LOAN_DATE DATE
LOAN_AMOUNT NUMBER(10)
PROD_KEY NUMBER(10)

TABLE: SALE_DETAILS
NAAM TYPE
----------------- -------------
TRX_LINE NUMBER(3)
SALE_ID NUMBER(2)
PROD_KEY NUMBER(10)
COSTS NUMBER

Fantrap Support in Discoverer Version 3.1.41, An Oracle Technical White Paper
April 2000

13

TABLE: OPERATOR
OPER_ID OPER_NAME LOGIN LOGOUT
------- --------- ------------------- -------------------
 2 JOHN 14-01-1999 20:00:00 14-01-1999 22:00:00
 1 PETER 17-01-1999 09:00:00 17-01-1999 11:30:00
 2 JOHN 24-02-1999 09:00:00 24-02-1999 10:00:00
 1 PETER 03-03-1999 14:00:00 03-03-1999 14:30:00
 1 PETER 01-05-1999 12:00:00 01-05-1999 17:00:00

TABLE: CUSTOMER
CUST_KEY CUST_ID CUST_NAME REG_KEY VALID_TH
-------- ------- --------- ------- --------
 1 1001 GRANT 1 01-01-99
 2 1002 CUMMINGS 2 01-01-99
 3 1003 MCCLOUD 2 01-01-99
 4 1004 JOHNSON 2 01-01-99
 5 1002 CUMMINGS 1 01-03-99

TABLE: PRODUCT
PROD_KEY PROD_NAME COLOR VALID_DATE DATE_UNTIL
-------- ---------------- ------ ---------- ----------
 1 Sparta Standard BLACK 01-01-00 10-01-00
 2 Sparta Race RED 01-01-00 10-01-00
 3 Gazelle Oldtimer SILVER 01-01-00 10-01-00
 4 Gazelle Tandem GREEN 01-01-00 10-01-00
 5 Raleigh Sprint BLUE 10-01-00 14-01-00

TABLE: CONTRACT
CONTR_KEY CONTR_DESC CONTR_DURATION
--------- -------------------- --------------
 1 LONG TERM CONTRACT 1 YEAR
 2 MIDDLE TERM CONTRACT 30 DAYS
 3 SHORT TERM CONTRACT 7 DAYS
 4 ONE DAY CONTRACT 24 HOURS

TABLE: SALE
CUST_KEY SALE_DATE SALES_AMOUNT OPER_ID SALE_ID
-------- --------- ------------ ------- -------
 4 14-01-99 1000 2 11
 1 14-01-99 500 2 12
 1 17-01-99 400 1 13
 2 24-02-99 800 2 14
 3 03-03-99 300 1 15
 5 01-05-99 1600 1 16

TABLE: SALE_DETAILS
TRX_LINE SALE_ID PROD_KEY COSTS
-------- ------- -------- -----
 111 11 1 2.00
 112 12 1 2.50
 113 12 3 0.75
 114 13 5 4.20
 120 14 4 3.10
 121 15 2 0.30
 130 16 3 1.10
 131 16 4 0.50
 132 16 5 4.00

TABLE: LOAN
CUST_KEY CONTR_KEY LOAN_DATE LOAN_AMOUNT PROD_KEY
-------- --------- --------- ----------- --------
 2 3 02-01-99 100 2
 1 4 04-01-99 10 1
 3 1 30-01-99 10 3
 4 3 01-02-99 50 2
 2 1 02-02-99 30 3
 2 4 20-02-99 30 1
 5 2 10-03-99 40 3
 3 3 11-03-99 20 1
 4 1 03-04-99 90 3

TABLE: CALENDAR
Records for 01-jan-1999 to 31-12-2000

Fantrap Support in Discoverer Version 3.1.41, An Oracle Technical White Paper
April 2000

14

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
+1.650.506.7000
Fax +1.650.506.7200
http://www.oracle.com/

Copyright © Oracle Corporation 2000
All Rights Reserved

This document is provided for informational purposes only,
and the information herein is subject to change without
notice. Please report any errors herein to Oracle
Corporation. Oracle Corporation does not provide any
warranties covering and specifically disclaims any liability in
connection with this document.

Oracle is a registered trademark and Enabling the
Information Age, Oracle7, Oracle8, PL/SQL, Oracle
Discoverer, Oracle Express, Oracle Reports, Designer and
Developer are trademarks of Oracle Corporation. All other
company and product names mentioned are used for
identification purposes only and may be trademarks of their
respective owners.

