10

Tierstein

Tierstein

1

Data Mart Database Design for OLTP Data Modelers

Leslie Tierstein

Constellar Corp.

Summary

This paper will consider the set of skills required for data modeling of a data mart or data warehouse -- from the perspective of an data modeler experienced in developing on-line transaction processing (OLTP) applications. What skills carry over from one realm to the other? What do OLTP modelers need to “unlearn” to be proficient data mart designers? And what new skill sets are required?

On-Line Transaction Processing vs. Data Mart Design

On-line transaction processing (OLTP) applications allow users to perform a business function by interactively entering discrete transactions, typically through software running on a client workstation. The transactions generally involve several records in multiple, related tables of a relational database. Emphasis is on an easy-to-use interface with user-friendly response times. The application may also consist of some batch programs (these days, typically interfaces between the OLTP application and other applications) and any number of reports.

The primary purpose of a data mart is to provide online analytical processing (OLAP). Such applications typically summarize large amounts of data previously collected by the day-to-day business processes. Emphasis is on getting the large amounts of data into the data mart and in responding to both adhoc and pre-determined end-user queries in a timely fashion. Business Intelligence (BI) front-ends, such adhoc query tools, report writers, and data-mining experts, are available to provide most end-user interfaces and meet information retrieval requirements.

Keeping these very general processing requirements in mind, let’s examine some phases of the system development life cycle for both types of projects. In particular, we’d like to highlight differences and similarities in:

· Analysis and Logical Design

· Physical Design

· Refreshing Database Contents

· Outstanding Theoretical and Practical Issues

Analysis and Logical Design

The starting point for a database implementation is the analysis – what are the entities involved? What are the relationships between entities? What attributes can be assigned to each entity? What functions must be performed, and how does these functions affect the entities and attributes identified?

Let’s take a look at typical, if somewhat simplistic designs for both OLTP and OLAP systems, to compare and contrast them. We’ll examine possible designs in a hot-design area, Customers and Customer Relationship Management.

The logical design, or analysis, phase of a project typically has two types of deliverables that generally overlap:

· Process or function-related: What functions will the software perform?

· Data-related: What data is required to support the business functions to be performed?

OLTP Functional Analysis

The OLTP functional analysis generally includes an extensive Requirements Analysis. Sometimes, too extensive – this is where the saying “Paralysis by Analysis” comes from. The process/functional requirements are typically documented via a detailed function hierarchy and/or process flow diagram. The diagrams are typically accompanied by an equally detailed CRUD (CREATE-READ-UPDATE-DELETE), showing which entities are involved in each process. Another deliverable is a formal Functional Requirements List, listing all the business requirements the proposed application must meet. In a controlled development effort, the formal Requirements List is a cornerstone of all future development phases, which all code checked against requirements, and user sign-off required to certify that all requirements have been met.

OLAP Functional Analysis

Before starting development of a data mart, you know the business function it must fulfill: Provide adhoc reporting and query capabilities for strategic and tactical corporate initiatives. How much analysis is required/desirable, given that the system’s goal is “adhoc” inquiries and/or to support data mining? After all, the point of the exercise is to allow users the liberty to manipulate their data freely, without externally imposed constraints.

A formal analysis, therefore, is almost certainly overkill. However, some analysis is required – you have to make sure the right data is in the data mart – at the right level of detail – to be able to respond to users’ queries. So, the analysis will be to attempt to identify what queries are most likely to be asked, and that are most important for the data mart to be able to answer: The Top-10 List: What are the top 10 questions you need to be able to answer?

OLTP Database Design

The OLTP system is a Customer Care application, similar to those that may be in use in any number of Hotlines or Help Desks.

· Many accounts, each in a marketing hierarchy (region, market, service area)

· Each account may generate numerous trouble calls (incidents)

· Each incident is assigned to a specialist at a call center

· Each incident may take many calls to resolve

· Each incident is categorized as to its type and resolution
The Entity-Relationship Diagram (ERD) for this system might look like the diagram on the following page.

The topology of this diagram will be familiar to most OLTP relational database designers:

· It contains lots of “crow’s feet”, indicating one-to-many relationships, such as hierarchies and master-detail relationships.

· Some of the crows’ feet denote many-to-one relationships. (For example, many master records use the same descriptions or codes.)

In short, the ERD reflects a design in Third Normal Form (3NF), derived at through “Normalization”.
[image: image1.wmf]SPECIALIST DIM

SPECIALIST ID

* CALL CENTER ID

* CALL CENTER NAME

* GROUP ID

* GROUP NAME

* SPECIALIST NAME

DATE DIM

INCIDENT DATE

* DAY OF WEEK

* MONTH NAME

* MONTH NBR

* YEAR

STATUS DIM

STATUS CD

* STATUS DESC

CATEGORY DIM

RESOLUTION ID

* CATEGORY CD

* CATEGORY DESC

* RESOLUTION DESC

* SUBCATEGORY CD

* SUBCATEGORY DESC

CUSTOMER DIM

CUST ID

* CUST NAME

* MARKET ID

* MARKET NAME

* REGION ID

* REGION NAME

...

INCIDENT FACT

handled by

handles

logged on

occured on

has status of

describes

described by

describes

call for

reported by

The discipline of normalization was developed to hand-in-hand with the growth of OLTP systems and relational databases. A good normalized design is true to the saying: “A column in a table is a fact about the key, the whole key, and nothing but the key, so help me Codd.”

Normalization eliminates “update anomalies” – data is not stored redundantly in the database, but a unique value can be found in one, easily identifiable row which can be logically (not physically) linked to any other row which needs access to the data.

The trade-off is that many tables must be joined to retrieve all relevant information. So, the ability to easily maintain the database is maintained, at the price of a longer time to retrieve data from all the related tables in which it is stored.

OLAP Database Design

Logical data mart design builds on some principles of normalized database design but requires practitioners to contradict others.
The data in a data mart is generally static, historical data. At a certain point in time, data is collected and inserted into the data mart. It is very rarely updated, Consequently, one important raison d’être for normalized, OLTP databases – eliminating update anomalies – goes out the window. Instead, the raison d’être is to provide fast access to vast amounts of data summarized in adhoc ways. To meet this requirement, many data marts (and data warehouses) are designed around a “star schema”.

Star Schema

A star schema is a database design that is based around the central “fact” that the user is interested in. They key design issue is identifying the fact and the attributes which comprise the fact.

OLTP Hint: Follow the master-detail relationships down to the appropriate level of detail; that’s probably your fact.

OLTP Hint: Think “transaction” -- sale, history, scheduling. That’s usually the object that’s of interest to the business.

Once the fact is isolated, you need to come up with the different ways of describing the fact, of “slicing and dicing” the information about the fact. The descriptive codes describing the fact are “dimensions”. Dimensions almost always have hierarchies built in.

OLTP Hint: The date is almost always a dimension. The hierarchy for a date could include some combination of the week, month, quarter, calendar year, and fiscal year in which the date occurred.

OLTP Hint: The reference tables of the fact are also one dimension - one way to describe the fact, with different levels of detail “denormalized” into one table

The basic design tool for describing s star schema is an ERD. In fact, the star schema derives its name from the shape of the ERD – a star, with the fact in the middle and the dimensions as arms radiating from the center of the star:

[image: image2.wmf]STATUS

STATUS CD

INCIDENT HISTORY

HISTORY ID

CALL CENTER

CENTER ID

GROUP

GROUP ID

SPECIALIST

SPECIALIST ID

RESOLUTION

RESOLUTION ID

SUB CATEGORY

SUB CATEGORY CD

CATEGORY

CATEGORY CD

INCIDENT

INCIDENT ID

CUSTOMER

CUSTOMER ID

SERVICE LOCATION

SERVICE AREA CD

SERVICE LOCATION CD

MARKET

MARKET ID

REGION

REGION ID

A data mart (or data warehouse) can consist of one or more stars.

The stars can (should) share dimensions.

Sometimes, a dimension in a star schema will, itself, have dimensions. This results in a “snowflake”, rather than a start schema. In a snowflake, the arms radiating off the central star also have arms. Snowflakes are typically used when one of the dimensions is quite large and volatile. In Customer Relationship Management, for example, there could be upwards of one million customers. Each of the customers, in turn, may need to be described by several independent dimensions, such as salesperson responsible, frequency of sales, geographic location, company size, and so on. Consequently, it may be useful to use a snowflake.

Snowflakes may have performance issues, since you have returned to a more normalized model, where multiple database accesses are required to collect all related data.

Operational Data Stores

Just because most data marts and data warehouses are built on star schemas or snowflakes, don’t think that you won’t have to design a normalized database! Wrong! When a data mart must consolidate data from multiple operational systems, it is common practice to first collect the data in an operational data store (ODS). The ODS is a database in third-normal form which serves as a staging area for the data. As additional operational systems are added to the mix (increasingly common in these days of mergers and acquisitions), code must be written to add the data from the new systems to the ODS. However, the code to actually load the data mart from the ODS is (by and large) unaffected by the addition or loss of new sources of data

Physical Design

When it comes to physical design, many of the same issues must be addressed. However, the resolution to each of these issues will probably be different. Let’s consider some highlights:

· Natural vs. Artificial Primary Keys

· Denormalization/Summarization

· Server-Side Referential Integrity Constraints

In all of these discussions, it is assumed that the data mart is implemented in a relational database, not via a multi-dimensional cube.

Natural vs. Artificial Primary Keys

A “natural” primary key is a primary key whose value is intelligible to the user, and occurs naturally in the application. An example might be a bank number, a customer account number or phone number, or an ISBN for a book. An “artificial” primary key is a primary key whose value is artificially derived, typically from an Oracle sequence or other sequence number generator. The value itself is not meaningful to business users, but is generated solely to guarantee a way to uniquely identify the records in question.

The issue of whether to use natural or artificial keys in a database design can be a religious argument, in both OLTP and Data Mart implementations. However, although some of the same arguments are advanced, different religions are involved.

The OLTP and OLAP arguments for using artificial keys go something like

OLTP: Use artificial keys if …
OLAP: Use artificial keys if …

The natural key value is subject to change, which has a cascade effect
The natural key value might not be unique (for example, when collecting data from multiple systems)

The key structure is too complex (> 5 columns, 64 characters)
The key structure is too complex (> 1 column)

Part of the natural key may be null
(Not possible; keys should consist of one column)

Your project standards say to
Your project standards say to

Denormalization/Summarization

OLTP. In OLTP parlance, denormalization is a methodology whereby a normalized design is “broken”, typically to enhance performance. For example,

· A summary of detailed data in stored in a master table. This eliminates the need to read multiple detail records to compute a summary amount, significantly decreasing database reads. For example, the total amount of invoice lines might be stored in the invoice header record.

· Derivable data is stored in a table, in addition to the columns, which are used in the formula to compute the derivable data. This practice allows an index to be used to search on the derived value. (It may no longer be required in Oracle 8i, where functions can be indexed.)

The trade-offs are the standard trade-offs of forsaking normalized form: every time the application updates one of the columns used to derived one of the redundant values, the redundant values must also be recalculated. Database triggers relieve some of the maintenance woes, but the triggers must still be written and maintained.

Data Mart. A data mart database design (a snowflake or star schema) is already denormalized – the one-to-many relationships are all compressed into one table, a dimension. However, a good way to enhance the performance of queries executed against a data mart is to use summarization. Assume that detailed transaction data is stored in the data mart, but that the most frequently asked queries want data summarized by week, by store, and by product. The data mart design would then include a summary table, which summarizes the transaction amount by those three dimensions. The summary table is redundant – the amounts are all derivable by computing and grouping in the detailed fact table. However, by pre-computing the summary amounts and storing these, a great amount of retrieval time is saved.

With the advent of Oracle8i, maintaining summary tables became much easier. Summary “tables” can actually be specified and maintained as materialized views. Part of the materialized view definition is the specification of when the view’s contents get refreshed; for example, when data is loaded into the base tables (event-triggered) or at pre-specified intervals (scheduled). Having the materialized view eliminates the need for programmers to maintain table definitions (for summary tables) as well as code for keeping the summary table contents up-to-date.

As with any technology, there are trade-offs. The major trade-off for using a summary table (or materialized view) is the extra space it takes up in the database.

Referential Integrity Constraints

OLTP. A OLTP application offers programmers three places where they can code referential integrity constraints:

· Server-side declarative constraints, implemented in the database via foreign key and check constraints

· Server-side procedural code, implemented via triggers or other procedural code

· Client-side GUI controls, implemented in the interactive programs used to enter and maintain data

An OLTP application typically includes a large number of interactive programs for data entry. So that programmers can be sure that they same integrity rules are always applied to the same set of data, no matter which program is being run, it is a recommended practice for integrity rules to be implemented in the database. This ensures that ALL data, no matter what program is used to enter it, must meet all of the same criteria for data integrity.

Data Mart. There is typically just one program that loads the data into the data mart. Consequently, the reason for using server-side referential integrity constraints – to ensure that the same rules are applied in ALL programs – no longer applies; if there is only one program. That one program, which loads the data into the data mart, can therefore use client-side code to ensure that dirty data doesn’t get put into the database. This eliminates the need for server-side constraints. This is good, since checking a server-side constraint on a per-record basis carries a fairly heavy performance penalty.

However, this doesn’t necessarily mean that you shouldn’t define the referential integrity constraints. Some business intelligence tools, such as Oracle Discoverer, consult the constraints defined in the database in order to determine how to join records from multiple tables in adhoc queries. However, it does mean that you should disable the constraints!

Loading/Refreshing Database Contents

OLTP. In an OLTP environment, loading the database contents is generally considered a one-time task. It’s called a data conversion – take the data from soon-to-be-replaced legacy systems, and load it into the database of the new OLTP application.

Data Mart. A data mart environment also includes a large initial load, where years of historical data is loaded into the data mart. However, that’s where the similarity to OLTP requirements ends.

· The data in the data mart must be refreshed periodically, to keep the data mart up-to-date with new operational data. Therefore, the code to load the data from source systems cannot be thrown away after one use. It must be maintained and modified as the source systems and data mart evolve.

· The data needs to be loaded efficiently, during the ever-shrinking maintenance window of the operational application that is its source. (Or, if the source system operates 24-by-7, and there is no maintenance window, sophisticated means, such as replication, need to be provided to supply the data.)

· The load/refresh program needs to supply metadata on the load process – how many records were loaded, how long did it take, what trends are developing in the volume and types of data loaded – to allow for capacity planning as the data mart size increases.

For these reasons, it’s likely that a seat-of-the-pants approach to coding will no longer be adequate. Instead, an E(T)TL tool is required to:

· Extract source data from the legacy system.

· (Transport data to the new platform.)

· Transform data to its new format.

· Load data into the new database.
Several such tools are on the market. Although they differ in detailed features, functions, and specifications, all should automate the routine tasks associated with refreshing database contents; provide a means of maintaining the refresh code and generating an impact analysis for proposed changes to either the source systems or the datamart; generate the production metadata required to monitor the data mart usage; and provide meaningful reports on problems with data cleanliness to owners of the source systems, so such problems can be eliminated in future loads.

Outstanding Issues

Despite years of work and usage, several theoretical and practical issues in designing relational databases are still unresolved. One of the thorniest issues revolves around how to handle changes to the model over time. Curiously, both OLTP and data mart design are faced with this problem.

OLTP. OLTP’s problem with time takes is the inability to take into account “Entity History”. An ERD, with its relationships that will be implemented as referential integrity constraints, cannot account for a relationship that is required only at certain times in the row’s life cycle. For example, an invoice must have method of payment only if its status is PAID or CLOSED, not when it is OPEN.

Given the current state of database technology, the only solution is to write procedural code to enforce the relationship only under certain (time-related) conditions. Perhaps in the future, a better solution will be available. For example, what if views were created on the invoice table for each of its possible statuses:

CREATE OR REPLACE VIEW open_invoice AS
(SELECT * FROM invoice
 WHERE status = ‘PAID’);

And referential integrity constraints could be defined between views?

Data Mart. The time-related issue confronting data mart design and implementation is the “Slowing Changing Dimension”. What if a dimension changes? For example, the Denver market used to be in the Western region, and rollups by region reflected this structure. However, to provide better service to regional markets, the company has restructured its regions, and now Denver is in the new, Mountain region. How can we compare summaries by region from before and after the change, since Denver would be counted in two different places? Many articles have been written on this topic, all of which suggest solutions that add a layer of complexity to both the data mart design and to all programs which need to access the data mart.

Conclusion

In a nutshell, here’s how your expert knowledge of OLTP methodology and technologies carries over into the realm of data mart analysis, design, and implementation:

· The data mart design won’t be in third-normal form, but will probably be a star schema or snowflake.

· But don’t forget the techniques of normalized design! A normalized database may be used for an operational data store.

· “Requirements” are not as formal. You still need to interview users and get their “Top 10” list. But since a major purpose in life of the data mart is to support adhoc queries, the major requirement is always: Collect enough data, at the correct level of detail, to supply what the users think they want.
· To enhance performance, the data mart will probably include summary tables; exclude or disable server-side referential integrity constraints; and need a DBA expert in VLDBs to do database configuration and tuning.
· Because of the large volumes of data involved and the ongoing maintenance requirements, it’s not a good idea to code the data mart load (refresh) routines by hand; seriously investigate using an ETL tool.
About the Author

Leslie Tierstein is a Senior Consultant at Constellar Corporation, a provider of data transformation and enterprise application integration (EAI) software. She has extensive experience in project management and in implementing online transaction processing and online analytical processing systems. She can be reached at ltierstein@constellar.com. The company web site is accessible at http://www.constellar.com.

